翻訳と辞書
Words near each other
・ Artimacormick
・ Artiman
・ Artimation
・ Artime
・ Artimes Farshad Yeganeh
・ Artimet
・ ARTIMIS
・ Artimus Parker
・ Artimus Pyle
・ Artin
・ Artin (name)
・ Artin algebra
・ Artin approximation theorem
・ Artin billiard
・ Artin Boşgezenyan
Artin conductor
・ Artin conjecture
・ Artin Dadyan Pasha
・ Artin group
・ Artin Hindoğlu
・ Artin Jelow
・ Artin L-function
・ Artin Madoyan
・ Artin Penik
・ Artin Poturlyan
・ Artin reciprocity law
・ Artin transfer (group theory)
・ Artin's conjecture on primitive roots
・ Artine Artinian
・ Artines


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Artin conductor : ウィキペディア英語版
Artin conductor
In mathematics, the Artin conductor is a number or ideal associated to a character of a Galois group of a local or global field, introduced by as an expression appearing in the functional equation of an Artin L-function.
==Local Artin conductors==

Suppose that ''L'' is a finite Galois extension of the local field ''K'', with Galois group ''G''. If χ is a character of ''G'', then the Artin conductor of χ is the number
:f(\chi)=\sum_\frac(\chi(1)-\chi(G_i))
where ''G''''i'' is the ''i''-th ramification group (in lower numbering), of order ''g''''i'', and χ(''G''''i'') is the average value of χ on ''G''''i''.〔Serre (1967) p.158〕 By a result of Artin, the local conductor is an integer.〔Serre (1967) p.159〕 If χ is unramified, then its Artin conductor is zero. If ''L'' is unramified over ''K'', then the Artin conductors of all χ are zero.
The ''wild invariant''〔 or ''Swan conductor''〔Snaith (1994) p.249〕 of the character is
: f(\chi) - (\chi(1)-\chi(G_0)),
in other words, the sum of the higher order terms with ''i'' > 0.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Artin conductor」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.